[Article] Hybrid Newton-type method for a class of semismooth equations
نویسنده
چکیده
In this paper, we present a hybrid method for the solution of a class of composite semismooth equations encountered frequently in applications. The method is obtained by combining a generalized finite difference Newton method to a inexpensive direct search method. We prove that, under standard assumptions, the method is globally convergent with a local rate of convergence which is superlinear or quadratic. We also report several numerical results obtained applying the method to suitable reformulations of well known nonlinear complementarity problems.
منابع مشابه
Global and Local Superlinear Convergence Analysis of Newton - TypeMethods for Semismooth Equations with Smooth Least
The local superlinear convergence of the generalized Newton method for solving systems of nonsmooth equations has been proved by Qi and Sun under the semismooth condition and nonsingularity of the generalized Jacobian at the solution. Unlike the Newton method for systems of smooth equations, globalization of the generalized Newton method seems dif-cult to achieve in general. However, we show th...
متن کاملA New Class of Semismooth Newton-Type Methods for Nonlinear Complementarity Problems
We introduce a new, one-parametric class of NCP-functions. This class subsumes the Fischer function and reduces to the minimum function in a limiting case of the parameter. This new class of NCP-functions is used in order to reformulate the nonlinear complementarity problem as a nonsmooth system of equations. We present a detailed investigation of the properties of the equation operator, of the...
متن کاملThe Josephy–newton Method for Semismooth Generalized Equations and Semismooth Sqp for Optimization
While generalized equations with differentiable single-valued base mappings and the associated Josephy–Newton method have been studied extensively, the setting with semismooth base mapping had not been previously considered (apart from the two special cases of usual nonlinear equations and of Karush-Kuhn-Tucker optimality systems). We introduce for the general semismooth case appropriate notion...
متن کاملA class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions
In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...
متن کاملHybrid of Rationalized Haar Functions Method for Mixed Hammerstein Integral Equations
A numerical method for solving nonlinear mixed Hammerstein integral equations is presented in this paper. The method is based upon hybrid of rationalized Haar functions approximations. The properties of hybrid functions which are the combinations of block-pulse functions and rationalized Haar functions are first presented. The Newton-Cotes nodes and Newton-Cotes integration method are then util...
متن کامل